Skip navigation

Tag Archives: Hubble constant

From a press release of the Space Telescope Science Institute, January 26, 2017:

By using galaxies as giant gravitational lenses, an international group of astronomers using the Hubble Space Telescope have made an independent measurement of how fast the Universe is expanding. The newly measured expansion rate for the local Universe is consistent with earlier findings. These are, however, in intriguing disagreement with measurements of the early Universe. This hints at a fundamental problem at the very heart of our understanding of the cosmos.

The Hubble constant — the rate at which the Universe is expanding — is one of the fundamental quantities describing our Universe. A group of astronomers used the Hubble Space Telescope and other telescopes in space and on the ground to observe five galaxies in order to arrive at an independent measurement of the Hubble constant. This new measurement is completely independent of — but in excellent agreement with — other measurements of the Hubble constant in the local Universe that used Cepheid variable stars and supernovae as points of reference.

However, the value measured by this team, as well as those measured using Cepheids and supernovae, are different from the measurement made by the ESA Planck satellite. But there is an important distinction — Planck measured the Hubble constant for the early Universe by observing the cosmic microwave background.

Studied lensed quasars of H0LiCOW collaboration

Credit: ESA/Hubble, NASA, Suyu et al.

The targets of the new study were massive galaxies positioned between Earth and very distant quasars — incredibly luminous galaxy cores. The light from the more distant quasars is bent around the huge masses of the galaxies as a result of strong gravitational lensing. This creates multiple images of the background quasar, some smeared into extended arcs.

Because galaxies do not create perfectly spherical distortions in the fabric of space and the lensing galaxies and quasars are not perfectly aligned, the light from the different images of the background quasar follows paths which have slightly different lengths. Since the brightness of quasars changes over time, astronomers can see the different images flicker at different times, the delays between them depending on the lengths of the paths the light has taken. These delays are directly related to the value of the Hubble constant.

Links: the full STScI press release, including further figures and links to published papers.

Advertisements

From a UC Berkeley press release, June 2, 2016:

Astronomers have obtained the most precise measurement yet of how fast the universe is expanding at the present time, and it doesn’t agree with predictions based on other data and our current understanding of the physics of the cosmos. The discrepancy – the universe is now expanding 9 percent faster than expected – means either that measurements of the cosmic microwave background radiation are wrong, or that some unknown physical phenomenon is speeding up the expansion of space, the astronomers say.

“If you really believe our number – and we have shed blood, sweat and tears to get our measurement right and to accurately understand the uncertainties – then it leads to the conclusion that there is a problem with predictions based on measurements of the cosmic microwave background radiation, the leftover glow from the Big Bang,” said The Cosmos author Alex Filippenko, a co-author of a paper announcing the discovery. “Maybe the universe is tricking us, or our understanding of the universe isn’t complete.”

The cause could be the existence of another, unknown particle – perhaps an often-hypothesized fourth flavor of neutrino – or that the influence of dark energy (which accelerates the expansion of the universe) has increased over the 13.8 billion year history of the universe. Or perhaps Einstein’s general theory of relativity, the basis for the Standard Model, is slightly wrong.

“This surprising finding may be an important clue to understanding those mysterious parts of the universe that make up 95 percent of everything and don’t emit light, such as dark energy, dark matter and dark radiation,” said Nobel Laureate Adam Riess, the leader of the study. Riess is a former UC Berkeley post-doctoral fellow who worked with Filippenko. The results, using data from the Hubble Space Telescope and the Keck I telescope in Hawaii, will appear in an upcoming issue of The Astrophysical Journal.

Links: UC Berkeley press release with more details of the measurements; Hubble press release; the ApJ paper;