Skip navigation

Tag Archives: movie

NASA’s MESSENGER orbiter of Mercury ran out of fuel and crashed into Mercury on May 1, 2015, ending a very successful mission. The craft slammed into Mercury’s surface at about 8,750 mph and created a new crater on the planet’s surface.

MESSENGER’s demise went unobserved because the probe hit the side of the planet facing away from Earth, so ground-based telescopes were not able to capture the moment of impact. Space-based telescopes also were unable to view the impact, as Mercury’s proximity to the Sun would damage their optics.

MESSENGER had been in orbit more than four years and completed 4105 orbits around Mercury. Among its many accomplishments, the MESSENGER mission determined Mercury’s surface composition, revealed its geological history, discovered its internal magnetic field is offset from the planet’s center, and verified its polar deposits are dominantly water ice.

The movie below shows a NASA simulation of the spacecraft’s epic voyage.

Links: MESSENGER home, Sky & Telescope’s report, NY Times article, high-resolution image of the crash-site, map of gravity anomoalies measured by deviations of MESSENGER from its predicted orbit.

Advertisements

Adapted from an NOAA press release, February 11, 2015:

On February 11, the United States Air Force launched a National Oceanic and Atmospheric Administration (NOAA) satellite called Deep Space Climate Observatory, or DSCOVR, into orbit. NOAA will use DSCOVR to monitor the solar wind and forecast space weather at Earth — effects from the material and energy from the Sun that can impact our satellites and technological infrastructure on Earth.

Data from DSCOVR, coupled with a new forecast model, will enable NOAA forecasters to predict geomagnetic storm magnitude on a regional basis. Geomagnetic storms occur when plasma and magnetic fields streaming from the Sun impact Earth’s magnetic field. Large magnetic eruptions from the sun have the potential to bring major disruptions to power grids, aviation, telecommunications, and GPS systems.

DSCOVR-Logo

The DSCOVR mission is a partnership between NOAA, NASA, and the U.S. Air Force.

In addition to space weather-monitoring instruments, DSCOVR is carrying two NASA Earth-observing instruments that will gather a range of measurements from ozone and aerosol amounts, to changes in Earth’s radiation.

Links: original NOAA press release; NY Times article about the launch, DSCOVR home.

The NY Times recently posted a short movie on the Sun: “Out There | Raining Fire” b

Links: the movie on NY Times website; NASA’s Solar Dynamics Observatory home.

From an article on CNET by Michelle Starr, February 12, 2015; visualizations by Ernie Wright:

As the Moon orbits the Earth, we only ever see the one side. This is because the moon is tidally locked – a single rotation of its axis takes the same amount of time as a single orbit around the Earth, so that the same side is always facing the Earth. Using its Lunar Reconnaissance Orbiter, NASA has collated data to reveal what the other side of the Moon looks like (see Section 6.2a, p. 127 and Figure 6-18, p. 133).

luna3_grid_alpha

Credit: NASA’s Goddard SFC Scientific Visualization Studio

As the Moon goes through its phases, we see it darken and lighten as viewed from Earth. Those phases are the opposite of what the far side of the Moon experiences: when we have a Full Moon, the far side is new; when we have a New Moon, the far side is full. This means that the LRO can observe the far side of the Moon in pretty good detail when it is illuminated by the Sun.

In the years since it launched in 2009, the LRO has sent back hundreds of terabytes of data about the Moon’s far side. What it has found is that the far side of the Moon is quite different from the side we see.

Links: CNET article; more information from NASA’s Scientific Visualization Studio; LRO home.

From a JPL press release dated November 21, 2014:

Scientists have produced a new version of what is perhaps NASA’s best view of Jupiter’s ice-covered moon, Europa. The mosaic of color images was obtained in the late 1990s by NASA’s Galileo spacecraft. This is the first time that NASA is publishing a version of the scene produced using modern image processing techniques.

Credit: NASA/JPL-Caltech/SETI Institute

Credit: NASA/JPL-Caltech/SETI Institute

The new image more closely approximates what the human eye would see than the earlier version (released in 2001). The image features many long, curving and linear fractures in the moon’s bright ice shell. Scientists are eager to learn if the reddish-brown fractures, and other markings spattered across the surface, contain clues about the geological history of Europa and the chemistry of the global ocean that is thought to exist beneath the ice.

In addition to the newly processed image, a new video details why this likely ocean world is a high priority for future exploration.

Links: more details about the image above; Europa exploration movie; NASA’s Europa homepage.

Adapted from a European Space Agency press release, September 26, 2014:

ESA’s Rosetta mission will deploy its lander, Philae, to the surface of Comet 67P/Churyumov–Gerasimenko on November 12, 2014. Philae’s landing site, currently known as Site J, is located on the smaller of the comet’s two ‘lobes’, with a backup site on the larger lobe. The sites were selected just six weeks after Rosetta arrived at the comet on August 6, following its 10-year journey through the Solar System.

Philae’s primary landing site

Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

The main focus to date has been to survey 67P/Churyumov–Gerasimenko in order to prepare for the first ever attempt to soft-land on a comet. Site J was chosen unanimously over four other candidate sites as the primary landing site because the majority of terrain within a square kilometre area has slopes of less than 30° relative to the local vertical and because there are relatively few large boulders. The area also receives sufficient daily illumination to recharge Philae and continue surface science operations beyond the initial 64-hour battery-powered phase.

Final confirmation of the primary landing site and its landing scenario will be made on October 14 after a formal review, which will include the results of additional high-resolution analysis of the landing site and its back-up conducted in the meantime. Should the backup site be chosen at this stage, the landing attempt can still take place on November 12.

Links: the ESA press release, including links to further resources on Rosetta and Philae and this short movie showing Philae’s planned descent.

Author Alex Filippenko’s recent talk “Discovering Our Celestial Connections: New data on Exploding Stars, Exoplanets, and Black Holes from UC’s Lick Observatory”, recorded at LinkedIn headquarters, is available to view below or here (approx. 1 hr 27 minutes).

From a JPL press release, August 21, 2014:

NASA’s Voyager 2 spacecraft gave humanity its first close-up look at Neptune and its moon Triton in the summer of 1989. Like an old film, Voyager’s historic footage of Triton has been “restored” and used to construct the best-ever global color map of this strange moon. The map, produced by Paul Schenk, a scientist at the Lunar and Planetary Institute in Houston, has also been used to make a movie recreating that historic Voyager encounter, which took place 25 years ago, on August 25, 1989. (See pp. 190-192)

Map of Triton

Credit: NASA/JPL-Caltech/Lunar & Planetary Institute

The new Triton map has a resolution of 1,970 feet (600 meters) per pixel. The colors have been enhanced to bring out contrast but are a close approximation to Triton’s natural colors. Voyager’s “eyes” saw in colors slightly different from human eyes, and this map was produced using orange, green and blue filter images.

In 1989, most of the northern hemisphere was in darkness and unseen by Voyager. Because of the speed of Voyager’s visit and the slow rotation of Triton, only one hemisphere was seen clearly at close distance. The rest of the surface was either in darkness or seen as blurry markings.

The production of the new Triton map was inspired by anticipation of NASA’s New Horizons encounter with Pluto, coming up a little under a year from now. Among the improvements on the map are updates to the accuracy of feature locations, sharpening of feature details by removing some of the blurring effects of the camera, and improved color processing.

Although Triton is a moon of a planet and Pluto is a dwarf planet, Triton serves as a preview of sorts for the upcoming Pluto encounter. Although both bodies originated in the outer solar system, Triton was captured by Neptune and has undergone a radically different thermal history than Pluto. Tidal heating has likely melted the interior of Triton, producing the volcanoes, fractures and other geological features that Voyager saw on that bitterly cold, icy surface.

Pluto is unlikely to be a copy of Triton, but some of the same types of features may be present. Triton is slightly larger than Pluto, has a very similar internal density and bulk composition, and has the same low-temperature volatiles frozen on its surface. The surface composition of both bodies includes carbon monoxide, carbon dioxide, methane and nitrogen ices.

Voyager also discovered atmospheric plumes on Triton, making it one of the known active bodies in the outer Solar System, along with objects such as Jupiter’s moon Io and Saturn’s moon Enceladus. Scientists will be looking at Pluto next year to see if it will join this list. They will also be looking to see how Pluto and Triton compare and contrast, and how their different histories have shaped the surfaces we see.

Links: the full JPL press release; Triton movie.

From a press release of the Max Planck Institute for Solar System Research, July 17, 2014:
As ESA’s spacecraft Rosetta is slowly approaching its destination, Comet 67P/Churyumov-Gerasimenko (see p. 213) is again proving to be full of surprises. New images obtained by OSIRIS, the onboard scientific imaging system, confirm the body’s peculiar shape that earlier pictures had hinted at. 67P is obviously quite unlike any other comet visited so far. (See also previous post.)

“The distance still separating Rosetta from 67P is now far from astronomical,” says OSIRIS principal investigator Holger Sierks from the Max Planck Institute for Solar System Research (MPS) in Germany. “It’s a trip of less than 12,000 kilometers. That’s comparable to travelling from Germany to Hawaii.”

However, while taking a snapshot of Mauna Kea, Hawaii’s highest mountain, from Germany is an impossible feat, Rosetta’s camera OSIRIS is doing a great job at catching ever clearer glimpses of its similarly sized destination. Images obtained on July 14th clearly show a tantalizing shape. The comet’s nucleus consists of two distinctly separated parts.

Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

“This is unlike any other comet we have ever seen before,” says OSIRIS project manager Carsten Güttler from the MPS. “The images faintly remind me of a rubber ducky with a body and a head,” he adds with a laugh. How 67P received this duck-like shape is still unclear. “At this point we know too little about 67P to allow for more than an educated guess,” says Sierks. In the next months, the scientists hope to determine more of the comet’s physical and mineralogical properties. These could help decide, whether the comet’s body and head were formerly two individual bodies.

In order to get an idea of what seems to be a very unique body, the observed image data can be interpolated to create a smoother shape. “There is, of course, still uncertainty in these processed, filtered images and the surface will not be as smooth as it now appears,” Güttler points out. “But they help us the get a first idea.”

Links: the original MPS press release and media files; an interactive movie (requires a Flash player) depicting Rosetta’s journey through the Solar System to reach Comet 67/P C-G.

Adapted from an ESA press release, July 17, 2014:
New images of Comet 67P/Churyumov-Gerasimenko reveal an extraordinarily irregular shape (see p. 213). It has become clear that this is no ordinary comet. Like its name, it seems that comet 67P/C-G is in two parts.

Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

ESA scientists have made this movie, using a sequence of 36 interpolated images each separated by 20 minutes, providing a truly stunning 360-degree preview of the overall complex shape of the comet. It supports the presence of two definite components – one segment seems to be rather elongated, while the other appears more bulbous. Indeed, some people have already likened the shape to a duck, with a distinct body and head. Note that the comet’s surface features won’t be as smooth as these processed images imply.

Dual objects like this – known as ‘contact binaries’ in comet and asteroid terminology – are not uncommon. Indeed, Comet 8P/Tuttle is thought to be such a contact binary; radio imaging by the ground-based Arecibo telescope in Puerto Rico in 2008 suggested that it comprises two sphere-like objects. Meanwhile, the bone-shaped Comet 103P/Hartley 2, imaged during NASA’s EPOXI flyby in 2011, revealed a comet with two distinct halves separated by a smooth region. In addition, observations of asteroid 25143 Itokawa by JAXA’s Hayabusa mission, combined with ground-based data, suggest an asteroid comprising two sections of highly contrasting densities.

Is Rosetta en-route to rendezvous with a similar breed of comet? The scientific rewards of studying such a comet would be high, as a number of possibilities exist as to how they form.

Links and further resources: the full ESA press release; link to unprocessed (still) image; link to movie.