Skip navigation

Tag Archives: Standard Model

François Englert and Peter W. Higgs have been awarded the 2013 Nobel Prize in Physics “for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, at CERN’s Large Hadron Collider.” The announcement by the ATLAS and CMS experiments took place on July 4 last year. (See Figure 19-15, p. 523.)


Credit: Vince Higgs

The Brout-Englert-Higgs (BEH) mechanism was first proposed in 1964 in two papers published independently, the first by Belgian physicists Robert Brout (now deceased) and François Englert, and the second by British physicist Peter Higgs. Among other things, it explains the mechanism that endows fundamental particles with mass. A third paper by Americans Gerald Guralnik and Carl Hagen with their British colleague Tom Kibble contributed to the development of the new idea, which now forms an essential part of the Standard Model of particle physics. As was pointed out by Higgs, a key prediction of the idea is the existence of a massive particle of a new type, dubbed the Higgs boson, which was discovered by the ATLAS and CMS experiments at CERN in 2012.

The Standard Model describes the fundamental particles from which we, and all the visible matter in the Universe, are made, along with the interactions that govern their behavior. It’s a remarkably successful theory that has been thoroughly tested by experiment over many years. Until last year, the BEH mechanism was the last remaining piece of the model to be experimentally verified. Now that the Higgs has been found, experiments at CERN are eagerly looking for physics “beyond the Standard Model”.

Links: the CERN press release, a Higgs boson poster courtesy of the Institute of Physics; an introductory cartoon explaining the Higgs field, courtesy of the New York Times; and Sean Carroll’s op-ed article, also in the New York Times.